A novel ultra-high compliance, high output impedance low power very accurate high performance current mirror

نویسندگان

  • Seyed Javad Azhari
  • Hassan Faraji Baghtash
  • Khalil Monfaredi
چکیده

In this paper a novel ultra-high compliance, low power, very accurate and high output impedance current mirror/source is proposed. Deliberately composed elements and a good combination (for a mutual auto control action) of negative and positive feedbacks in the proposed circuit made it unique in gathering ultra-high compliances, high output impedance and high accuracy ever demanded merits. The principle of operation of this unique structure is discussed, its most important formulas are derived and its outstanding performance is verified by HSPICE simulation in TSMC 0.18 mm CMOS, BSIM3 and Level49 technology. Simulation results with 1 V power supply and 8 mA input current show an input and output minimum voltages of 0.058 and 0.055 V, respectively, which interestingly provide the highest yet reported compliances for current mirrors implemented by regular CMOS technology. Besides an input resistance of 13.3 O, an extremely high output resistance of 34.3 GO and 3 dB cutoff frequency of 210 MHz are achieved for the proposed circuit while it consumes only 42.5 mW and its current transfer error (at bias point) is the excellent value of 0.02%. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel ±0.5V Ultra High Current Drive and Output Voltage Headroom Current Output Stage with Very High Output Impedance

A novel ultra-high compliance, low power, very accurate and high output impedance current output stage (COS) with extremely high output current drive capability is proposed in this paper. The principle of operation of this unique structure is discussed, its most important formulas are derived and its outstanding performance is verified by HSPICE simulation in TSMC 0.18µm CMOS, BSIM3, and Level4...

متن کامل

A Novel Very High Performance CMOS Current Mirror with extremely low input and ultra high output resistance

In this paper a novel very high performance current mirror is presented. It favorably benefits from such excellent parameters as: Ultra high output resistance (36.9GΩ), extremely low input resistance (0.0058Ω), low output (~0.18V) and low input voltage (~0.18V) operation, very low power consumption (20μW), very low offset current (1pA), ultra wide current dynamic range (150dB), and ultra high a...

متن کامل

An Ultra High CMRR Low Voltage Low Power Fully Differential Current Operational Amplifier (COA)

this paper presents a novel fully differential (FD) ultra high common mode rejection ratio (CMRR) current operational amplifier (COA) with very low input impedance. Its FD structure that attenuates common mode signals over all stages grants ultra high CMRR and power supply rejection ratio (PSRR) that makes it suitable for mixed mode and accurate applications. Its performance is verified by HSPI...

متن کامل

A Low Voltage Low Power High Performance FGMOS Based Current Mirror

A high performance FGMOS based current mirrors at low supply voltage is proposed in this paper. A combination of floating gate and CMOS technology is used to design this new simple current mirror at low supply voltage of 0.5V using 180nm CMOS technology. Very low input impedance of 14Ω with increased input voltage swing. In addition to accurate current copy, a very high output impedance of 5GΩ ...

متن کامل

An Ultra-Low Power Variable Gain Current Mirror

A power efficient gain adjustment technique is described to realize programmable gain current mirror. The dissipation power changes over the wide gain range of structure are almost negligible. This property is in fact very interesting from power management perspective, especially in analog designs. The simple structure and constant frequency bandwidth are other ever-interesting merits of propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2011